NOAA Cloud Evaluation November 21, 2019 Carolyn Pasti, President **RedLine Performance Solutions** cpasti@redlineperf.com ## Acknowledgements ## **NOAA RDHPCS Sponsors** Frank Indiviglio and Bernie Siebers ## **GDIT – NOAA RDHPCS Prime Contractor and Project Lead** • Bill Asbury, Alan Powers, Rick Valencia, Raghu Reddy, Nathan Dauchy ### **RedLine Performance Solutions – GDIT Subcontractor** Don Avart, Keith Ball, Andrew Qualkenbush, James Abeles ## **Cloud Service Providers (CSPs)** - Amazon, Microsoft, Penguin Computing, Google, Rescale - All resources provided at no cost to the project through GDIT Alliance relationship or in specific support to the evaluation project ## **Overview** #### Goal • Evaluate commercially available cloud platforms to support future mission functions of numerical weather prediction and support NOAA in defining the strategic goals of the HPCC program ## **Approach** - Establish baselines for FV3GFS and UPP benchmarks on NOAA systems - Estimate deployment size to achieve 7 minutes per forecast day for FV3GFS - Deploy virtual resources, install and run benchmarks - Develop Singularity containers - Develop cost model - Evaluate against study objectives # **Cloud Evaluation Findings** | Objective | Findings | |-------------|---| | Performance | HPC cloud capabilities include exclusive node use, low-latency interconnects,
node/traffic affinity and colocation features | | | High-performance network and HPC parallel file system are critical features | | | Run-time performance competitive with NOAA on-premise systems | | | Varying availability of low-latency interconnect between compute and storage | | Cloud | • Key ability is an HPC parallel file system "as a service", which can support compute needs | | Management | Data storage and data transfer (ingress/egress) costs must be considered | | | Tiered storage: sync HPC parallel file system to lower-cost storage | | | Some CSPs have mature single-command deployment of compute, networking, and
storage (after initial definition) – processes and ease of use varied | | | Cloud "on-demand" services do not include built-in method to limit usage by cost or hours used | # Cloud Evaluation Findings (cont'd) | Objective | Findings | |---------------------------|---| | User | Scheduler interfaces generally consistent/similar to on-premise HPC clusters | | Experience | Utilized SSH to a login node (as with traditional clusters); APIs or Web access available in most cases Data staging needs more efficient methods than just SCP; ease of use varied | | Application
Containers | Singularity framework is well suited to HPC (permissions model, no daemons, works with workload managers) Need to make decisions regarding what goes into the container Application binaries and supporting libraries, environment variables Some fixed input files may make sense Containerized MPI applications introduce dependencies on MPI stack outside the container | | | Small to negligible overhead, straightforward to build | # Further Considerations for Refining Cloud Strategy - Determine best "cloud consumption model" - Handling data: what should/can live in the cloud? - Investigate lower cost nodes/processors (for storage and compute) - Identify workflows capable of utilizing heavily discounted node instances - Data staging and moving data to/from less expensive storage between job runs to reduce storage costs - Explore performance of the other processors besides Intel which could reduce runtimes - Evaluate Cloud bursting from on-premise resources - Use Spack in a container as a portable build environment - Establish cloud pilot for selected workflow(s)